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Experimental and theoretical aspects of the

stabilization of zirconia.
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Using the Rietveld method, phases of ceria-doped zirconia, calcined at temperatures of 600
and 900 ◦C, were quantitatively analysed for different concentrations of ceria. The results
show that the stabilization of zirconia depends on the dopant concentration and calcination
temperature. Moreover, the theoretical calculation using the ab initio
Hartree–Fock–Roothaan method indicates that the most stable phases for ceria-stabilized
zirconia are cubic or tetragonal, in accordance with experimental results. C© 1999 Kluwer
Academic Publishers

1. Introduction
Zirconia is an important material for high-temperature
applications [1]. There are three well-defined polymor-
phisms for this material: monoclinic, tetragonal and
cubic phases. The monoclinic phase, which is stable
below 1300 K, can be described as a distortion of the
cubic CaF2 structure [2]. Zirconium dioxide is nor-
mally monoclinic at room temperature, but undergoes
a reversible martensitic phase transformation at about
1200◦C to a tetragonal structure [3]. Although this
high-temperature phase cannot be quenched, it is well
known that the tetragonal structure exists at room tem-
perature in microcrystals [4].

The crystal structure of, and mechanisms of the trans-
formations between, the monoclinic, tetragonal and
cubic phases are of considerable technical interest, be-
cause they can be manipulated to provide optimized
physical and chemical properties of the materials fabri-
cated from the stabilized zirconia [5–7]. The so-called
partially stabilized zirconias (PSZ), which are typically
two-phase cubic and tetragonal or single-phase tetrago-
nal, are of importance for mechanical and structural ap-
plications. The fully stabilized zirconias (FSZ), which
are normally single-phase cubic, are of interest for heat-
ing elements, oxygen sensors and fuel cell applications
[5]. The zirconia can be stabilized at room temperature
by doping with oxides of di, tri- and tetravalent met-
als such as calcium, magnesium, yttrium, lanthanum,
ytterbium and cerium [8].

The electronic structures of both cubic and tetrago-
nal zirconia were calculated by the discrete variational
(DV) X alpha method. The results show that zirconia is
fairly ionic, and its ionicity is different for the cubic and
the tetragonal phases [9]. Chinget al. [10] have studied
the electronic levels and charge-density distribution in
defect-stabilized zirconia by means of large cluster cal-
culations. Cohenet al. [11] have calculated the phase
transitions and elasticity in zirconia using the potential-

induced breathing (PIB) model. The elastic constants
and pressure derivatives for cubic zirconia are dis-
crepant with experimental data, and it is suggested that
disorder greatly affects its elastic behaviour. Further-
more, disorder and defects may be important in stabiliz-
ing the monoclinic and tetragonal structure of zirconia.

Zandiehnadem and Murray [12] studied zirconia in
the cubic, tetragonal and monoclinic phases using a first
principle self-consistent orthogonalized linear combi-
nation of the atomic orbital method. They obtained the
band gaps of 3.84, 4.11 and 4.51 eV, respectively, for
the three phases. Jansen and Gardner [13] used the
full-potential linear-augmented-plane-wave (FLAPW)
method for studying the tetragonal to cubic phase tran-
sition. Their results show the phase transition from
tetragonal to cubic is driven by the thermal motion of
the oxygen atoms. Orlandoet al. [14] proposed the use
of a periodicab initio Hartree–Fock method to inves-
tigate the structural stability and electronic structure
of the two high-temperature phases of zirconia. The
analysis of the electronic structure shows appreciable
departure from a purely ionic type of bond. Frenchet al.
[15] examined the optical properties of the three phases
of zirconia with vacuum ultraviolet and valence band
X-ray photoemission spectroscopies combined withab
initio band structure calculations (orthogonalized linear
combination of atomic orbital method) in an attempt to
understand the complex interaction of the stabilizing
dopants and associated atomic defects with the crystal
structures of zirconia and their phase transitions. The
experimental samples were single or polycrystalline
stabilized materials which contained atomic defects,
while the calculations were performed for undoped ide-
alized zirconia structures without atomic defects. Rea-
sonable agreement was found between experiment and
theory at this level.

The theoretical and experimental analysis of the
stabilization of zirconia leads to antagonistic results
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due to the high number of parameters that should
be optimized. However, it should be mentioned that
at room temperature the tetragonal and cubic phases
could exist when doped with alkaline earth metal ox-
ides (MgO, CaO) or by transition metal oxide (Y2O3,
CeO2). Thus the theoretical studies should consider the
effects of these dopants because they have not been
considered so far [9–14].

In this work, an experimental study to verify the in-
fluence of dopant concentration on the stabilization of
zirconia as a function of temperature was carried out
and compared with the theoreticalab initio results on
ceria-stabilized zirconia.

2. Experimental procedure
and calculation method

The monoclinic samples were prepared from zircon by
alkaline fusion (IPEN). Data for the other phases were
collected on free-standing, sintering specimens of poly-
crystalline zirconia containing CeO2 (0, 2, 4, 6, 8 and
10 mol %). The samples were characterized by X-ray
diffraction using a Siemens D-5000 diffractometer. The
quantitative analysis (wt %) was performed with the
results of the Rietveld refinements, according to the
Hill, Howard and Reichert method (Equation 1) [16].
The DBWS 9411 Rietveld program [17] was used, with
the pseudo-Voigt profile function (Equation 2), in the
following least squares parameters refinements: four
background polynomial, unit cell, scale factor, peak-
width (U, V,W ), shape (η), asymmetry, and crystal
structures for the predominant phases. The full-width at
half-maximum varied according to the Caglioti, Paoletti
and Ricci function [18]

W j = M j Vj S j

/∑
i

(Mi Vi Si ) (1)

p − V = ηL + (1− η)G (2)

whereS is the scale factor reached at the end of the
Rietveld refinements,V is the unit cell volume calcu-
lated with the refined unit cell parameters, andM is
the mass of all the unit cell contents, for each phase.
L andG are the Lorentz and Gauss functions, respec-
tively, η is the Lorentzian fraction varying with 2θ by
N A+ N B 2θ , andNAandNBare refinable parameters.

To study the stabilization, the cluster model
(CeZr3O8) was used. Theab initio Hartree–Fock–
Roothaan was employed for the calculation with the
Games program [19].

The linear combination of atomic orbitals (LCAO)
method has been extensively used in the study of elec-
tronic structures of solids in the last 20 years. One of the
advantages of the LCAO method is its ability to handle
systems with complex structures and large unit cells be-
cause of the basis functions. In the present calculation,
the orbital exponents and contraction coefficients of the
atomic wave functions were determined by optimizing
total energies, as was explained in detail in a previous
article of Sakaiet al. [20].

In the minimal basis set, the radial functions of the
atomic orbitals are expressed as

Rnx =
N∑

i = 1

Cnx,i Xi (r ) (3)

WhereX = s, N = 2 for O; N = 5 for Zr, andN = 6 for
Ce; X = p, N = 1 for O; N = 3 for Zr, andN = 4 for
Ce;X = f , N = 1 for Ce, andn is the principal quantum
number. This set of primitive Gaussian-type functions
(GTOs) are used to construct eachsi (r ), pi (r ), di (r ) or
fi (r ), which can be written as

si (r )
m∑

k= 1

dSI , kgSi (αSi , k, r ) (4)

pi (r )
m∑

k= 1

dpi , kgpi (αpi , k, r ) (5)

di (r )
m∑

k= 1

ddi , kgdi (αφ, k, r ), (6)

fi (r )
m∑

k= 1

d f i , kg f i (α f i , k, r ), (7)

where gsi , gpi , gdi , and g f i are normalized 1s-type,
2p-type, 3d-type and 4f-type Gaussian functions, re-
spectively. The convenient shortened notations are
(432222/4222/4214) for cerium; (73, 7) for oxygen
and (43333/433/43) for zirconium. The orbital expo-
nents and the contraction coefficients have been deter-
mined by the same method reported by Huzinagaet al.
[21], and the values are shown in Table I.

The structural parameters used in the band structure
calculations are summarized in Table II and Figure 1,
including unit cell parameters, volumes per molecule
and bond lengths for Zr-O and Ce-O.

3. Results and discussion
The stabilization of zirconia should be considered
both theoretically and experimentally. The experimen-
tal analyses are based on the synthesis method and the
type and concentration of dopants, whereas the theoret-
ical results are based on quantum mechanical methods
and on the optimization of the crystalline structure. Due
to the fundamental complexity of dopant-induced phase
stabilization of zirconia, it is not possible at present to
undertake experimental and theoretical studies of iden-
tical systems. A room-temperature study of the three
phases of zirconia requires the use of dopants in order to
stabilize the tetragonal and the cubic phase of zirconia.
These materials have substantial dopant concentrations
and also have high concentrations of dopant-induced
oxygen vacancies. The stabilizers strongly affect the
unit cell volume of the tetragonal and cubic phases,
leading to larger unit-cell volumes than the idealized
structure [15].

Refinements of the monoclinic, tetragonal and cu-
bic structures were undertaken in space groups P21/c,
P42/nmc and Fm3m, respectively, and the results are
shown in Tables III and IV. As shown in these tables,
the cubic phase of zirconia can be stabilized completely
(100%) with additions of CeO2, which does not induce
oxygen vacancies into the zirconia structure. However,
Dwivedi and Cormack [22] suggested that the cubic
phase is stabilized by doping zirconia with cations such
as Ca2+ which impose a local cubic symmetry on the
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TABLE I Exponents and expansion coefficients for zirconium, cerium and oxygen

Ce O Zr

Exponents Coefficients Exponents Coefficients Exponents Coefficients

s1 s1 s1

7624.1049 0.1166973 10334.736 0.0008449 23631.786 0.0168699
50563.078 0.0166001 1500.3950 0.0067550 3562.8550 0.1185090
1734.6306 0.4306567 337.95497 0.0343071 808.60763 0.4348796
469.78702 0.5665720 96.051304 0.1250896 218.05710 0.5615664

s2 31.613952 0.3167742
700.94718 −0.1147211 11.423798 0.4533328 s2

81.168677 0.6594528 4.3012501 0.2144500 326.01729 −0.1118501
35.782997 0.4120855 37.193042 0.6449565

s3 s2 15.852335 0.4274608
69.370368 0.2784065 10.195221 −0.0837570 s3

11.019743 −1.132336 0.93361357 0.5751097 29.133824 −0.2521087
s4 0.28587720 0.5103155 5.0468818 0.7860020

13.119354 −0.3183287 2.2623576 0.3549481
2.1795111 1.1521180 p1 s4

s5 117.21023 0.0022198 3.7366979 −0.2986953
2.5787978 −0.2682437 26.967137 0.0172064 0.76213451 0.7775379
0.33572966 1.1098845 8.3338649 0.0750846 0.32420281 0.3994054

s6 2.9811654 0.2122762 s5

0.01149362 0.1584908 1.1284031 0.3725583 0.43503515 0.1698386
0.03414466 0.8674480 0.42167369 0.3985842 0.06305064 −0.6844755

p1 0.15059051 0.1832060 0.02564552 −0.4201123
2383.3398 0.0244934 p1

563.10164 0.1653555 1037.5430 0.0264386
177.92475 0.4919077 244.33521 0.1742981
62.635045 0.4769569 76.352112 0.5001034

p2 26.341227 0.4645667
27.047588 0.4739006 p2

10.797621 0.5867927 12.091567 0.3419849
p3 4.9777934 0.5656245

4.4186707 0.5455808 2.1315357 0.1858844
1.8164039 0.5122086 p3

p4 1.1983281 0.4371619
0.60472662 0.5634847 0.50580455 0.5167044
0.22177225 0.5086430 0.20176662 0.1393652

d1 d1

297.66639 0.0380686 99.316322 0.0498668
87.399204 0.2197978 28.232958 0.2570547
31.380124 0.5264647 9.5340582 0.5306913
11.655706 0.4193660 3.2233126 0.4038262

d2 d2

6.1047986 0.4958934 1.5339873 0.2328655
1.9558493 0.6259546 0.46969283 0.5299868

f1 0.13054859 0.4871967
25.516484 0.0830548
7.5835275 0.3154957
2.4478786 0.5223007
0.70826970 0.4442941

TABLE I I Crystallographic parameters and bond distances used in the
structure calculation

Parameters Cubic Tetragonal Monoclinic

Lattice constant a= 0.5083 a = 0.3584 a = 0.5147
(nm) b = 0.5170 b = 0.5198

c = 0.5314
β = 99.21

Volume (10−3 nm3) 131.60 66.40 140.36
Space group Fm3m P42/nmc P21/c
Zr-O bond (nm) 0.2072 0.2102 0.2210
Ce-O bond (nm) 0.2072 0.2102 0.2090

TABLE I I I Phase percentages obtained by the Rietveld method for
the zirconia–ceria system at 600◦C

Ceria Monoclinic Tetragonal Cubic Total
(%) (%) (%) (%) stabilized (%)

0 54.8± 0.5 0 45.2± 0.6 45.2± 0.6
1 91.0± 0.4 9.0± 0.9 0 9.0± 0.9
2 24.0± 0.7 76.0± 0.6 0 76.0± 0.6
4 16.5± 1.0 66.9± 0.7 16.6± 1.0 83.5± 1.7
6 0 0 100 100
8 0 0 100 100

10 0 0 100 100
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TABLE IV Phase percentages obtained by the Rietveld method for
the zirconia–ceria system at 900◦C

Ceria Monoclinic Tetragonal Cubic Total
(%) (%) (%) (%) stabilized (%)

0 94.8± 0.3 0 5.2± 0.9 5.2± 0.9
1 95.4± 0.2 1.0± 0.9 3.6± 0.8 4.6± 1.7
2 93.7± 0.2 0 6.4± 0.8 6.4± 0.8
4 60.7± 0.6 39.3± 0.8 0 39.3± 0.8
6 8.0± 0.8 92.0± 0.4 0 92.0± 0.4
8 7.3± 0.8 92.7± 0.4 0 92.7± 0.4

10 0 91.7± 0.4 8.3± 0.9 100

Figure 1 Schematic representation of the zironia–ceria structures:
(a) monoclinic, (b) tetragonal, (c) cubic.

anion sublattice. The defect energy of a vacancy is lower
in cubic zirconia than in tetragonal zirconia. Therefore,
the presence of vacancies makes the cubic phase more
stable. The importance of oxygen vacancies for the
cubic phase stabilization has been emphasized by
Hillert and Sakuma [23] and Hillert [24]. Cormack and
Parker [25] calculated the phonon spectra of pure and
doped cubic zirconia crystals. They obtained an imag-
inary frequency for the X2− mode in the pure crystal
and concluded that the cubic phase does not correspond
to a local minimum of the adiabatic free energy surface
(AFES). By adding impurities they calculated that the
frequency of this mode becomes positive, which was
interpreted as a creation of a local minimum of the
AFES corresponding to the cubic phase. Stefanovich
and Shluger [26] proposed that the calculations clearly
reveal an important effect of dopants on the dynamics
and hence the free energy of the solid. However, the
existence of the total energy minimum does not neces-
sarily imply that the cubic phase has lower free energy
than the tetragonal phase and, therefore, does not prove
its relative thermodynamic stability. They have iden-
tified some of the basic factors controlling the relative
stability of the tetragonal and cubic zirconia such as the
ionicity, vacancies, defect–defect interactions and elec-
tronic configuration of cations. However, the studies of
Li et al. [27, 28] using X-ray diffraction showed that
the coordination of the cerium ion with oxygen in the
zirconia matrix is significantly different to that of the
host cation. CeO4−8 polyhedrons of a large size were ob-
served in tetragonal zirconia with a CeO bond length
greater than that of a ZrO bond, but smaller than that
of the Ce O bond length in pure ceria.

On further analysis of Tables III and IV, it is observed
that a higher amount of stabilized zirconia with the cu-
bic structure was obtained at 600◦C than at 900◦C,
showing clearly the effect of crystallite size. The crys-
talline size, measured by XRD using the Rietveld
method, did not change substantially with cerium con-
centration. The mean value of crystalline size for pow-
ders calcined at 600◦C was 35 nm while for powders
calcined at 900◦C it was 55 nm. According to Garvie
[4] the existence of the tetragonal phase in monocrystals
at temperatures well below the normal monoclinic-to-
tetragonal transformation temperature can be explained
by a crystallite size effect. The experimental results are
therefore coherent because there is an association of
crystallite size and dopant concentration on the phase
formation. For a low calcination temperature (600◦C)
there is a predominance of tetragonal (2 and 4 mol %
ceria) and cubic (6, 8 and 10 mol % ceria) zirconia. An
increase in calcination temperature to 900◦C results in
less-stabilized zirconia being formed for compositions
containing 0–2 mol % ceria. The increase in calcina-
tion temperature therefore destabilizes the low ceria-
concentration-doped zirconia (0–2 mol % Ce). More-
over the increase in ceria concentration (4–10 mol %)
produces the transformation of zirconia from mono-
clinic to predominantly tetragonal phase.

The structure energies formed by substitution of a
zirconium atom by a cerium atom are listed in Table V.
These data are in accordance with the experimental
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TABLE V Total energy, ET, high occupied molecular orbital
(HOMO) and low unoccupied molecular orbital (LUMO)

Parameters Cubic Tetragonal Monoclinic

ET (arb. units) −19765.3405 −19764.7775 −19759.1837
HOMO (arb. units) −0.1773 −0.2135 −0.2765
LUMO (arb. units) −0.0387 −0.0628 −0.0124

TABLE VI Atomic charges (arb. units) of the (ZrO2)3CeO2 structure

Atom Cubic Tetragonal Monoclinic

Ce1 2.69 2.64 2.49
Zr2 1.26 0.82 0.21
Zr3 1.26 0.82 1.16
Zr4 1.02 1.36 0.15
O5 −0.90 −0.81 −0.55
O6 −0.90 −0.81 −0.55
O7 −0.66 −0.60 −0.57
O8 −0.66 −0.60 −0.57
O9 −0.90 −0.81 −0.44
O10 −0.90 −0.81 −0.44
O11 −0.66 −0.60 −0.44
O12 −0.66 −0.60 −0.44

results listed in Tables III and IV, where the tetragonal
and cubic structures are more stable at room tempera-
ture after stabilization. In this case there is no formation
of oxygen vacancies, which are considered as funda-
mental for the stabilization of zirconia [23, 24]. The
stabilization of zirconia is therefore promoted by the
action of dopant ions at a molecular level. This fact is
emphasized in Table VI where the electron population
on the cerium ion has a decreasing value from the cubic
phase to the monoclinic phase (less stable). The same
effect is observed for the mean value of electron popula-
tions on the zirconium ion. The role of a dopant would
be to generate a centre of polarization and attraction
that would decrease the unit-cell volume of zirconia.
The repulsive forces would then overcome the attractive
forces in the monoclinic structure, resulting in the for-
mation of the cubic and tetragonal structures at ambient
temperature and consequently destabilizing the mono-
clinic structure. The calculation of Modelung potentials
for MgO and Y2O3 stabilized zirconia [29] indicated
that the cubic structure of these crystals are metastable.
These structures transform without an energy barrier to
a pseudomonoclinic or tetragonal structure. However,
these calculations have neglected important effects such
as short-range interactions, covalent bond, etc. In the
present work, the theoretical model considers these ef-
fects by using theab initio HFR method.

The results listed in Table VII show that there is a
good reproducibility in the determination of the energy
gap for zirconia, although theab initio self-consistent
field Roothaan–Hartree–Fock methods overestimate
the calculated values [14]. This fact emphasizes the
strong dependence of the base choice with relation to
this property, because theab initio calculation made by
Orlandoet al. [14] resulted in values up to three times
higher than the experimental values.

4. Conclusion
The experimental results show that the stabilization of
zirconia is dependent on the dopant concentration but

TABLE VI I The electronic energy gaps (eV) for zirconia

Reference Monoclinic Tetragonal Cubic

[26] (theor.) 5.25 3.05 2.88
[12] (theor.) 4.51 4.11 3.84
[14] (theor.) 12.3 13.3
[15] (theor.) 4.46 4.28 4.93
[15] (exper.) 5.83 5.78 6.10
[15] (exper.) 7.09 6.62 7.08
[30] (exper.) 4.70 5.73
present work (theor.) 7.18 7.51 3.77

crystallite growth can generate stresses that destabi-
lize cubic or tetragonal phases to the monoclinic phase.
Vacancy concentration is an important, but not funda-
mental, factor for zirconia stabilization.

The theoretical results show that the dopant acts as
a local stabilizer agent by generating a crystalline field
that decreases the volume of the monoclinic, tetragonal
and cubic phases, causing destabilization of the mono-
clinic phase resulting in the formation of the cubic or
tetragonal phases.
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